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Scattering Length and Diffusion 

J. M.  Luttinger 1'2 

Received February 5, 1976 

An expression for an asymptotic property of the Green's function for the 
diffusion of a particle is obtained. It is shown that this provides (as a special 
case) a very simple derivation of a previous result of Kac and Luttinger 
relating the scattering length to a certain Wiener integral. 

K E Y  W O R D S  : Diffusion; scattering length; path integrals. 

1. The purpose of this paper is to obtain an expression for a certain 
asymptotic property of the Green's function for diffusion. Suppose we have 
some absorbing material localized near the origin. Let a particle start 
diffusing at time 0 f rom a point r, and ask for the probability that at a time t 
later we find it in a small volume dr '  around r ' .  This probability is determined 
by the Green's  function in question, and we denote it by Gt(r. r ')  dr ' .  As is 
well known, Gt satisfies the diffusion equation 

[aGt(r, r ' ) /a t ]  + [ - � 8 9  2 + v(r)]Gt(r, r ' )  = 0 (1) 

and the boundary condition 

lim Gt(r, r ' )  = ~(r - r ' )  (2) 
t - * 0 +  

is the usual Dirac ~ function and v(r) dr is the probability per unit time that 
a particle in dr around r is absorbed. (We have chosen units such that the 
diffusion constant is �89 

The Green's  function may be expressed in terms of  a complete ortho- 
normal set of  eigenfunctions of  the Schr6dinger equation with the potential 
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v(r) (units such that h = m = 1). If v(r) (viewed as a potential energy) 
possesses no quantum mechanical bound states, then (as is customary in 
scattering theory) we may write 

f dk 4,k(r)4,k*(r') (3/ - r ' )  = 

where ~b~(r) is the so-called outgoing wave solution of the Schr6dinger 
equation with energy 

E = k2/2 (4) 

and the asterisk represents complex conjugation. That is, ~bk(r ) is the solution 
of the Schr6dinger equation that satisfies the boundary condition 

~b~(r) -+ exp(ik, r) + fk(~, s ], r -+ oo (5) 

The quantities t and k are unit vectors in the direction of r and k, respectively. 
fk is known as the scattering amplitude. From (3) we see that Gt is given by 

Gt(r, r ')  = f ~ - ~  ~bk(r)~bk*(r') exp ( ---~ t )  (6) 
dk 

since it satisfies the differential equation and the boundary condition. 
We shall now prove the following result. Let G~ ~ be the Green's function 

when v(r) = 0, and let x and x' be fixed vectors. Then 

lim X/-[(2rrt)zl2[G~~ x, ~/t  x') - Gt(a/t x, X/7 x')] 
t--* o0 

= a x +  ~ 

(x is the magnitude of x). The quantity a is the scattering length, defined by 

a = - lira f~(~, fQ (8) 
t c ~ 0  

As is shown in elementary discussions of scattering theory, a is independent 
of the direction ~, ~, i.e., it is a constant characterizing the potential v(r). 

To obtain (7), we use the representation (6) and (5). For large t we may 
write (sincef~ is zero if v is zero) for the leading term 

X/t (2rrt)3:2[G~~ x, a / t  x') - G~(V'7 x, ~/t  x')] 

-~-k2 t )  
- ta/2 [" e x p ( -  (2--~)3/~ j dk 

x (fk(~, k) exp(ikx/tXx- ik.x'V'~) 

+ f , ( ~ , ,  ~) e x p ( - i k ~ / t  x' + ik .x~ /7) )  
x' (9) 
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(It is easy to see that  the term propor t ional  tofkf~* gives a contr ibut ion which 
goes to zero as t approaches infinity.) The factor exp(-{k2t) ensures that  as 
t -+ to the only contr ibut ion comes f rom the ne ighborhood of  k = 0. Thus 
we may use (8). This gives for  the right-hand side of  (9) 

a j" dK [-K2~ ~exp(-iKx' iK-x) l  v j + + 

where we have introduced as new integration variables K -= v/7 k. The K 
integrals are now elementary and we find (7). 

The  result (7) can be written somewhat  less precisely as follows. Reintro-  
ducing r and r ' ,  we may write, for  large r, r ' ,  and t, 

(1 1,) 1 (r+r')2--Gt (10) 
Gt(r, r ' )  ~ G~~ r ' )  - a r + ~ ~ exp 2t 

Using the well-known fact that  the unper turbed Green 's  funct ion G~ ~ is given 
by 

1 (r - r ' )  2 ( 1 1 )  
G~~ r ' )  = ~ exp - 2t 

we can show by a simple direct calculation that  this expression satisfies 

[(e/0t) - �89 r ' )  = -2~-a~(r)G~~ r ' )  (12) 

We have used the s tandard result 

V2(llr)  = - 4 ~ 3 ( r )  

But (12) is exactly what  we would expect  on the basis of  Fermi 's  pseudo- 
potential  t heory2  This tells us that  if all lengths in the problem (in this case 
r, r ' ,  ~/7) are much  greater than the range of  the potential,  the potential  can 
be replaced by a 8 function of  strength 2~ra and treated by first-order per- 
turbat ion theory. With this prescription (12) is equivalent to (1). 

2. We now show that  our  previous result (2),~ for  the scattering length as 
the expectat ion value with respect to Wiener measure of  a certain functional  
follows at once f rom (7). Let  us consider the quanti ty 

A - l i m ~  dr dr'[G~~ r ' )  - Gt(r, r ' ) ] ( l /Z~t)  (13) 
t ~ e o  d 

Writing r = ~ / t x ,  r '  = C t x ' ,  we find that  (13) becomes 

A = lim 1 lira ~ dx  dx '  
t~o~ ~ t ~ o j  

x [ajo)(VTx, VTx ' )  - 6 t (V ' tx ,  VTx') l (awt)3/2v ' t  (14) 

a A nice description of this theory may be found in Ref. 1. 
4 Also see Ref. 3. The results of the present paper are somewhat more general, only 

requiring no bound states and not v > 0. They are also, however, much more heuristic. 
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Taking the limit under the integral sign (easily justified) and using (7), 
we find 

A = a dxdx '  + ~  exp 2 

The integral on the right-hand side of (15) is elementary, and we find 

A = a (16) 

On the other hand, using the usual relationship ~4> between the Green's func- 
tion of diffusion and an expectation value with respect to Wiener measure, 
we find at once that the right-hand side of (13) is just 

lim (1/2rrt) dr 1 - exp - v(r + r(t ')) dr' = a (17) 

by (17). E{ } is the expectation value with respect to Wiener measure of all 
paths r(t') that begin at the origin. Equation (17) is our previous result. 

Another very similar result may be obtained as follows. Consider 

-= lim (1/2~rt)(2rrt)3/2f dr[G~~ r) - Gt(r, r)] B 
t'--} ~ J 

lira (1/2rr) f dx[G[~ x, ~/7 x) - Gt(V/7 x, V/t x)](2~rt)sl2V/t 
~ c o  J 

= (a/2~r)f dx (2 /x)exp( -2x  2) = a (18) 

Again, expressing the Green's functions as Wiener averages, r we find that 
(18) becomes 

}im (1/2~-t)fdr E { 1 -  e x p [ -  fo g v(r + r( t ' ) )dt ' l [o)  : a (19) 

where E{ [0) is the expectation value with respect to all paths that begin and 
end at the origin (conditional Wiener measure). 

It is clear that many other relationships of the same general type may be 
obtained from (7) in a trivial way, but we shall not consider any of these here. 
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